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Abstract

The D� Collaboration has measured the inclusive jet cross section in �pp

collisions at
p
s = 630 GeV. The results for pseudorapidities j�j < 0:5 are

combined with our previous results at
p
s = 1800 GeV to form a ratio of cross

sections with smaller uncertainties than either individual measurement. Next-

to-leading-order QCD predictions show excellent agreement with the measure-

ment at 630 GeV; agreement is also satisfactory for the ratio. Speci�cally,

despite a 10% to 15% di�erence in the absolute magnitude, the dependence of

the ratio on jet transverse momentum is very similar for data and theory.

Typeset using REVTEX
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For reactions with large momentum transfers, quantum chromodynamics (QCD) treats
complex proton-antiproton interactions in terms of simpler scattering processes involving
only one constituent from each particle. Identifying these \parton" constituents with quarks
and gluons, perturbative QCD calculates production cross sections for scattered partons
(observed as showers or \jets" of collimated particles) that also depend on empirically-
determined parton distribution functions (PDF) of the proton.

This measurement compares the production rate of jets as a function of their transverse
energy, ET , at two �pp center-of-mass energies:

p
s = 630 GeV and 1800 GeV. This compari-

son reduces the systematic uncertainties and minimizes the prediction's sensitivity to choice
of PDF.

In the simple parton model, inclusive jet cross sections scale with
p
s in the sense that

the dimensionless quantity f(xT ) = E4

T �E d3�
d3p

, as a function of jet xT � 2ETp
s
, does not depend

on
p
s [1]. In this model, the ratio of scaled cross sections for di�erent energies is unity for

all xT . Although previous data [2,3] exhibited signi�cant deviation from this naive scaling,
the dimensionless framework provides a useful context for comparison with QCD. The D�
collaboration at the Fermilab Tevatron recently published the inclusive jet cross section atp
s = 1800 GeV using 95700�500 nb�1 of data [4]. This Letter presents our complementary

measurement at
p
s = 630 GeV, using a sample of 538 � 22 nb�1 of data [5]. Because the

data at both values of
p
s were collected with the same detector [6], many uncertainties in

the results are highly correlated, and the ratio of the cross sections has greater precision
than either of the absolute measurements.

The di�erential jet cross section, d2�=dETd�, is measured in bins of ET and pseudora-
pidity, � � � ln

�
tan �

2

�
, where � is the polar angle of the jet relative to the proton beam. (In

this formulation, the dimensionless cross section, averaged over azimuth, is
E3

T

2�
�d2�=dETd�.)

The D� reconstruction algorithm de�nes a jet by the total ET observed in calorimeter cells
contained within a cone of radius R � [(��)2 + (��)2]

1

2 = 0:7, where � is the azimuthal
angle. When two such clusters of cells overlap, they are merged into a single jet if they share
more than 50% of the ET of the lower-ET cluster; otherwise, they are split into two separate
jets, each de�ned by its own �-� centroid and ET value [7].

The online trigger requires at least one jet above a set threshold. The o�ine data selection
procedure, which suppresses backgrounds from electrons, photons, noise, and cosmic rays,
follows the methods used in the 1800 GeV analysis [8,9]. The e�ciency of jet selection is
approximately 96% and is nearly independent of jet ET . To maintain precision in jet ET ,
a vertex requirement removes jets resulting from �pp interactions more than 50 cm from the
center of the detector, thereby reducing the total e�ciency to 82%. The uncertainty on the
cross section associated with all e�ciencies is < 0:5% [9].

Jet energies are corrected [10] for the energy response of the D� calorimeter to hadrons,
the broadening of the hadronic shower, and energy from multiple interactions, calorimeter
noise, and the underlying event (fragmentation of the spectator partons). The response
correction increases the ET of jets by 22% for measured calorimeter ET of 20 GeV, and by
15% for jet ET above 100 GeV. The 1% showering correction recovers the net energy lost
when hadrons from inside the R=0.7 cone deposit energy outside it as they interact within
the calorimeter. Calorimeter noise, from electronics and from uranium activity, contributes
on average 1:6 GeV of ET to each jet. The underlying event contributes 0:6 GeV of ET

to each jet at
p
s = 630 GeV, compared to 0:9 GeV at

p
s = 1800 GeV. The corrections

5



o�set one another, so that a jet's measured ET typically increases by 12% to 14% after
implementing all energy scale corrections. Uncertainties in the corrections for noise and
response dominate the systematic uncertainty of the �nal result.

Both detector imperfections and random uctuations in shower development of individual
jets within the calorimeter result in the smearing of a jet's ET about its true value. The
�nite ET resolution shifts the observed cross section to higher ET , especially in the most
steeply falling regions of the distribution. The measurement of jet resolution as a function
of ET and the unsmearing procedure follow the steps described in Ref. [4]. The unsmearing
correction is larger at 630 GeV than at 1800 GeV because the cross section is signi�cantly
steeper at the ET values of interest.

Figure 1 depicts the inclusive jet cross section at
p
s = 630 GeV in the pseudorapidity bin

j�j < 0:5. Each data point indicates the ET at which the cross section within that bin has its
average value. The bin widths are chosen to match the bins in xT from the

p
s = 1800 GeV

analysis. Table I reports the bin ranges, point positions, and uncertainties. The solid
line in Fig. 1 indicates the result of a calculation using the jetrad next-to-leading-order
(NLO) partonic event generator [11] and the CTEQ3M PDFs [12]. The renormalization and
factorization scales are set to � = Emax

T =2, where Emax

T corresponds to the ET of the leading
jet in an event.
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FIG. 1. The inclusive jet cross section at
p
s = 630 GeV, integrated over azimuth and averaged

over j�j < 0:5. The shaded band corresponds to the systematic uncertainties in the measured cross

section and the solid line shows a prediction from NLO QCD.

Figure 2 compares the cross section to the NLO QCD prediction in greater detail. The
\baseline" renormalization and factorization scales are set to � = Emax

T =2; additional lines
in Fig. 2 indicate the predictions that result from changes in either PDF or � relative to
the baseline prediction speci�ed for that pane. The shaded regions in Fig. 2 indicate the
one standard deviation systematic uncertainty of the measurement, and the vertical bars
indicate the statistical uncertainty. The �rst prediction, generated with the MRST [13]
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PDF, is shown to best reproduce the absolute magnitude of the data, but the CTEQ4HJ
[14] curve in the second pane appears to provide the closest match in shape. Changing
� modi�es both the normalization and the shape of the predictions, as seen in the third
pane. We quantify the agreement between the data and the various predictions with a �2

comparison, as described below.
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FIG. 2. The inclusive jet cross section at
p
s = 630 GeV compared to several NLO QCD

predictions. Error bars indicate statistical uncertainties and shaded bands correspond to systematic

uncertainties. The horizontal lines at zero indicate the baseline prediction that is named in each

pane; additional lines indicate theoretical variations relative to the baseline.

Combining the results from this Letter with those of Ref. [4], Fig. 3 displays the ratio
of dimensionless jet cross sections as a function of xT . The observed ratio ranges from 1.48
to 1.85, depending on the value of xT . The largest uncertainties arise from the corrections
for response and noise, and the rest primarily from resolution and luminosity. Although
the systematic errors on the individual measurements range from 10% to as much as 30%,
strong correlations reduce the uncertainty on the ratio to values as small as �5:4%. The
two �nal columns of Table I provide the numerical results for the ratio.

As shown in Fig. 3, NLO QCD predictions for the ratio lie systematically above the
data throughout most of the measured xT range, in particular between xT of 0.1 and 0.2,
where the ratio has the smallest statistical uncertainty. Choice of PDF has little e�ect
on the prediction | only the renormalization/factorization scales change the prediction
appreciably.

A covariance matrix �2 comparing data and theory provides a measure of the probability
that the theory describes the observed results. To verify that our covariance matrix, built
mostly from correlated systematic uncertainties, produces results that are consistent with
a standard �2 distribution with 20 degrees of freedom, we generated an ensemble of 20
million experiments using a Monte Carlo program. Each statistical and systematic error was
simulated and varied randomly using appropriate correlations in ET and

p
s. Systematic
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Bin Plotted Plotted Cross Sec. (nb/GeV) Cross Sec. Ratio Ratio

ET (GeV) ET (GeV) xT � Stat. Error Sys. Error (%) � Stat. Sys. (%)

21.0 { 24.5 22.6 0.072 (2:56� 0:03)� 102 21.7 1:72� 0:03 12.7

24.5 { 28.0 26.1 0.083 (1:07� 0:02)� 102 17.2 1:64� 0:04 9.7

28.0 { 31.5 29.6 0.094 (5:14� 0:16)� 101 14.6 1:62� 0:06 8.0

31.5 { 35.0 33.1 0.105 (2:67� 0:05)� 101 13.0 1:67� 0:03 7.0

35.0 { 38.5 36.7 0.116 (1:37� 0:04)� 101 12.1 1:57� 0:04 6.3

38.5 { 42.0 40.2 0.127 (7:96� 0:27)� 100 11.5 1:59� 0:06 6.0

42.0 { 45.5 43.7 0.139 (4:24� 0:20)� 100 11.2 1:48� 0:07 5.8

45.5 { 49.0 47.2 0.150 (2:83� 0:16)� 100 11.0 1:63� 0:09 5.5

49.0 { 52.5 50.7 0.161 (1:81� 0:13)� 100 10.9 1:64� 0:12 5.4

52.5 { 56.0 54.2 0.172 (1:14� 0:03)� 100 10.9 1:64� 0:04 5.4

56.0 { 59.5 57.7 0.183 (7:35� 0:21)� 10�1 11.0 1:62� 0:05 5.4

59.5 { 63.0 61.2 0.194 (5:07� 0:17)� 10�1 11.1 1:67� 0:06 5.4

63.0 { 66.5 64.7 0.205 (3:29� 0:14)� 10�1 11.3 1:60� 0:07 5.5

66.5 { 70.0 68.2 0.216 (2:42� 0:12)� 10�1 11.5 1:74� 0:09 5.5

70.0 { 73.5 71.7 0.228 (1:64� 0:10)� 10�1 11.8 1:69� 0:10 5.6

73.5 { 77.0 75.2 0.239 (1:18� 0:08)� 10�1 12.1 1:78� 0:13 5.8

77.0 { 80.5 78.7 0.250 (8:79� 0:72)� 10�2 12.4 1:81� 0:15 5.9

80.5 { 94.5 85.2 0.271 (3:69� 0:23)� 10�2 13.6 1:74� 0:11 6.4

94.5 { 112.0 100.5 0.319 (1:05� 0:11)� 10�2 16.2 1:85� 0:20 7.7

112.0 { 196.0 136.2 0.432 (5:81� 1:19)� 10�4 20.4 1:83� 0:38 9.7

TABLE I. Inclusive jet cross section at
p
s = 630 GeV and the ratio of dimensionless cross

sections f630(xT )=f
1800(xT ), where f (xT ) = E4

T � E d3�
d3p

and xT = 2ET =
p
s. The cross sections are

all integrated over azimuth and averaged in the range j�j < 0:5.
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PDF � 630 GeV C. Sec. Ratio Norm.

�2 Prob. �2 Prob. �2 Prob.

2�Emax

T 40.5 0.43% 17.9 59.4% 3.33 6.81%

ET 25.9 16.8% 21.6 36.2% 7.13 0.76%

CTEQ3M Emax

T =2 30.4 6.37% 20.5 42.5% 9.56 0.20%

Emax

T =4 27.5 12.2% 15.1 77.4% 1.45 22.93%

CTEQ4M Emax

T =2 24.1 23.8% 22.4 31.9% 10.67 0.11%

CTEQ4HJ Emax

T =2 18.9 52.5% 21.0 40.0% 13.21 0.03%

MRST Emax

T =2 22.6 30.7% 22.2 33.0% 12.60 0.04%

MRSTGU Emax

T =2 14.9 78.2% 19.5 48.7% 11.07 0.09%

MRSTGD Emax

T =2 51.8 0:012% 24.1 23.9% 12.92 0.03%

TABLE II. �2 comparisons for the cross section at
p
s = 630 GeV (20 degrees of freedom), the

ratio of cross sections (20 degrees of freedom), and a comparison for the ratio involving only the

absolute magnitude (one degree of freedom).

sections at the two energies, experimental uncertainties are much smaller and di�erences
in the predictions from choice of PDF are less important. NLO predictions for the ratio
exhibit satisfactory agreement with the shape of the observed ratio. In terms of only the
magnitude however, the absolute values of the predictions lie signi�cantly higher than the
data, especially for the standard scale � = Emax

T =2.
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